本文主要针对高数基础知识是哪些概念,高数分为哪几类题型和考研高数四基本概念是什么等几个问题进行详细讲解,大家可以通过阅读这篇文章对高数基础知识是哪些概念有一个初步认识,...
考研专业
一、函数和极限
映射-函数
数列极限-函数极限(无限接近)
函数极限趋近于0-无穷小,函数永远增长-无穷大
函数极限计算和推导方式
无穷小阶数比较
函数映射的伴随增量无穷小变化相随-函数连续性
函数连续性的推导原则
二、导数和微分
导数:函数伴随因变量无穷小变化的函数值变化规则
函数求导法则
高阶导数
隐函数求导、参数方程求导
微分:函数伴随因变量无穷小变化的函数求值
微分计算方式
三、微分中值定理和导数应用
罗尔定理:极点对导数的反推。
微分中值定理:由函数曲线切线-拉格朗日中值公式:用导数求函数值
中值公式证明反推-双函数的柯西中值定理:两个函数导数当中的关系。
分子分母分别求导再求极限来确定未定式的值的方式:洛必达法则
泰勒公式:用多级导数多项式来求函数值。
函数枯燥乏味性与函数曲线凹凸,函数曲线凹凸与拐点
函数极值
弧微分:用切线求微弧线段长度
弧度:的视角除以微弧线-曲率圆,曲率半径、曲率中心
四、不定积分
不定积分和积分的计算方式
五、定积分
定积分和定积分的计算方式
反常积分:对无穷x区间上求定积分极限值
反常积分的收敛
六、定积分的应用
七、微分方程
微分方程解答:由函数导数和自变量关系求原函数关系
八、空间剖析解读几何和向量代数
向量和向量的计算
曲面方程:反应曲面上点变量关系的方程式
曲线方程
平面方程
直线方程
九、多元函数微分法及其应用
多元函数:多变量依赖的函数方程式
多元函数的极限和连续性
偏导数:对多元函数的某一元因变量求导的函数
全微分:用偏微分求全微分
多元复合函数的求导方式
多元隐函数求导
方向导数与梯度
多元函数极值
十、重积分
重积分:对多元空间求积分
二重积分和三重积分的计算
重积分的应用
十一、曲线积分和曲面积分
弧长曲线积分:对N元空间曲线(积分弧段)内的微分长度求某N元函数(被积函数)的积分。
坐标曲线积分的计算方式:用两个偏导数函数求坐标曲线积分
十二、无穷级数
级数:数列构成的表达式
级数的收敛和发散
幂级数,幂级数的转换与应用
傅里叶级数,傅里叶级数的转换与应用
一般觉得,高等数学分为微积分学,较深入的代数学、几何学还有它们当中的交叉内容。主要内容涵盖极限、微积分、空间剖析解读几何与线性代数、级数、常微分方程。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何还有简单的集合论初步、逻辑初步称为中等数学的,故将他作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
高等数学有什么内容
主要内容涵盖:数列、极限、微积分、空间剖析解读几何与线性代数、级数、常微分方程。是工科、理科、财经类研究生考试的基础科目。
指对比初等数学来说,数学的对象及方式较为繁杂的一些。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何还有简单的集合论初步、逻辑初步称为中等数学的,故将他作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
一般觉得,高等数学是由微积分学,较深入的代数学、几何学还有它们当中的交叉内容所形成的一门基础学科。

高数分几种
高等数学一般分为高数A、高数B、高数C三类。
高数A对应理工类专业(数学专业不学高数,而是学难度更大的数学分析。)
高数B对应经管类专业
高数C对应文史类专业(语言类专业不学高数;法学专业有部分学校学高数C,有部分学校比如华政不学高数。)
高数B与高数A的区别整体上说就是:
1、A的难度和知识的广度要高于B,因为这个原因A的课时比B要多
2、A主要偏向于理工科的知识结构范围,B偏向于经济类的计算
3、大多数情况下来说把A都搞得很好了,考B大多数情况下也会很好。
4、高数A、B的教学基本要求和历届考题高数老师应该会让你们买。
5、高数A、B是混不过去的,故此,上课一定要去,作业一定要自己做。混,不管你高中数学有多好,都会挂得很惨的。
6、假设要问高数的详细难度,可以到书店翻一下近几年的考研题,学校考试不会高于这个难度。
理工类高数涵盖:
一、与高数B共同内容
1. 函数、极限、连续
2. 一元函数微积分
3. 多元函数微积分
4. 级数
5. 常微分方程
二、A要求但B不要求
(1) 掌握并熟悉基本初等函数的性质和图形
(2) 掌握并熟悉极限存在的二个准则,并会利用它们求极限
(3) 会用导数描述一部分简单的物理量
(4) 了解曲率,曲率半径的概念,并会计算
(5) 了解求方程近似解的二分法和切线法
(6) 了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程
(7) 三重积分
(8) 曲线曲面积分
(9) 向量代数与空间剖析解读几何
高等数学一般分为高数A、高数B、高数C三类。
高数A对应理工类专业(数学专业不学高数,而是学难度更大的数学分析。)
高数B对应经管类专业
高数C对应文史类专业(语言类专业不学高数;法学专业有部分学校学高数C,有部分学校比如华政不学高数。)
高数B与高数A的区别整体上说就是:
1、A的难度和知识的广度要高于B,因为这个原因A的课时比B要多
2、A主要偏向于理工科的知识结构范围,B偏向于经济类的计算
3、大多数情况下来说把A都搞得很好了,考B大多数情况下也会很好。
4、高数A、B的教学基本要求和历届考题高数老师应该会让你们买。
5、高数A、B是混不过去的,故此,上课一定要去,作业一定要自己做。混,不管你高中数学有多好,都会挂得很惨的。
6、假设要问高数的详细难度,可以到书店翻一下近几年的考研题,学校考试不会高于这个难度。
理工类高数涵盖:
一、与高数B共同内容
1. 函数、极限、连续
2. 一元函数微积分
3. 多元函数微积分
4. 级数
5. 常微分方程
二、A要求但B不要求
(1) 掌握并熟悉基本初等函数的性质和图形
(2) 掌握并熟悉极限存在的二个准则,并会利用它们求极限
(3) 会用导数描述一部分简单的物理量
(4) 了解曲率,曲率半径的概念,并会计算
(5) 了解求方程近似解的二分法和切线法
(6) 了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程
(7) 三重积分
(8) 曲线曲面积分
(9) 向量代数与空间剖析解读几何
高等数学与高中联系不大,唯有函数、极限和空间向量是从高中过渡的主要内容。但是,函数的基础一定要打好!不然苦海无边,到时还需要重翻高中课本。
考研大纲每一年都会有新的文本颁布,但是,每一年与前年的变化不大,特别是数学,考研考生可参临近考试前年考纲,新考纲在每一年的9月份左右会在中国研究生招生信息网公布,新考纲也会有各个考研机构老师进行解读,可自行去研招网下载、研究,下面附2019年数二考纲:
2019年数学二考试大纲
考试科目:高等数学、线性代数
考试答题方式和考试试卷结构
一、考试试卷满分及考试时间
考试试卷满分为150分,考试时间为3个小时.
二、题目作答方法
题目作答方法为闭卷、笔试考试.
三、考试试卷内容结构
高等数学 约78%
线性代数 约22%
四、考试试卷题型结构
单项选择题 8小题,每小题4分,共32分
填空题 6小题,每小题4分,共24分
解题目作答(涵盖证明题) 9小题,共94分
高等数学
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、枯燥乏味性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷非常多的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:枯燥乏味有界准则和夹逼准则 两个重要极限:
,
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握并熟悉函数的表示法,并会建立应用问题的函数关系.
2.了解函数的有界性、枯燥乏味性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握并熟悉基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念还有函数极限存在与左极限、右极限当中的关系.
6.掌握并熟悉极限的性质及四则运算法则.
7.掌握并熟悉极限存在的两个准则,并会利用它们求极限,掌握并熟悉利用两个重要极限求极限的方式.
8.理解无穷小量、无穷非常多的概念,掌握并熟悉无穷小量的比较方式,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性当中的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数还有参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数枯燥乏味性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一部分物理量,理解函数的可导性与连续性当中的关系.
2.掌握并熟悉导数的四则运算法则和复合函数的求导法则,掌握并熟悉基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数还有反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握并熟悉用洛必达法则求未定式极限的方式.
7.理解函数的极值概念,掌握并熟悉用导数判断函数的枯燥乏味性和求函数极值的方式,掌握并熟悉函数的最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时的图形是凸的),会求函数图形的拐点还有水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.
三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用
考试要求
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握并熟悉不定积分的基本公式,掌握并熟悉不定积分和定积分的性质及定积分中值定理,掌握并熟悉换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握并熟悉牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握并熟悉用定积分表达和计算一部分几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.
四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握并熟悉多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会处理一部分简单的应用问题.
5.了解二重积分的概念与基本性质,掌握并熟悉二重积分的计算方式(直角坐标、极坐标).
五、常微分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握并熟悉变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.
3.会用降阶法解下方罗列出来的形式的微分方程: 和 .
4.理解二阶线性微分方程解的性质及解的结构定理.
5.掌握并熟悉二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
6.会解自由项为多项式、指数函数、正弦函数、余弦函数还有它们的和与积的二阶常系数非齐次线性微分方程.
7.会用微分方程处理一部分简单的应用问题.
线性代数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握并熟悉行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵还有它们的性质.
2.掌握并熟悉矩阵的线性运算、乘法、转置还有它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握并熟悉逆矩阵的性质还有矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握并熟悉用初等变换求矩阵的秩和逆矩阵的方式.
5.了解分块矩阵及其运算.
三、向量
考试内容
向量的概念 向量的线性组合和线性表示 向量组的线性有关与线性无关 向量组的非常大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩当中的关系 向量的内积 线性无关向量组的正交规范化方式
考试要求
1.理解维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性有关、线性无关的概念,掌握并熟悉向量组线性有关、线性无关的相关性质及判别法.
3.了解向量组的非常大线性无关组和向量组的秩的概念,会求向量组的非常大线性无关组及秩.
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.
5.了解内积的概念,掌握并熟悉线性无关向量组正交规范化的施密特(Schmidt)方式.
四、线性方程组
考试内容
线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解
考试要求
1.会用克拉默法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系及通解的概念,掌握并熟悉齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组的解的结构及通解的概念.
5.会用初等行变换解答线性方程组.
五、矩阵的特点值和特点向量
考试内容
矩阵的特点值和特点向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特点值、特点向量及其相似对角矩阵
考试要求
1.理解矩阵的特点值和特点向量的概念及性质,会求矩阵的特点值和特点向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.
3.理解实对称矩阵的特点值和特点向量的性质.
六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方式化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方式化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握并熟悉其判别法.
以上就是本文高数基础知识是哪些概念,高数分为哪几类题型的全部内容,关注博宇考试网了解更多关于文高数基础知识是哪些概念,高数分为哪几类题型和考研专业的相关信息。
本文链接:https://bbs.china-share.com/news/336785.html
发布于:博宇考试网(https://bbs.china-share.com)>>> 考研专业栏目
投稿人:网友投稿
说明:因政策和内容的变化,上文内容可供参考,最终以官方公告内容为准!
声明:该文观点仅代表作者本人,博宇考试网系信息发布平台,仅提供信息存储空间服务。对内容有建议或侵权投诉请联系邮箱:ffsad111@foxmail.com
考研专业
本文主要针对高数基础知识是哪些概念,高数分为哪几类题型和考研高数四基本概念是什么等几个问题进行详细讲解,大家可以通过阅读这篇文章对高数基础知识是哪些概念有一个初步认识,...
考研专业
本文主要针对国际会计好考研吗,国际会计专业可以报考哪些专业研究生和国际会计专业考研等几个问题进行详细讲解,大家可以通过阅读这篇文章对国际会计好考研吗有一个初步认识,对于...
考研专业
本文主要针对华南女子学院护理专业怎么样,广东公办专科护理学校有哪些学校和华南地区护理专科考研学校等几个问题进行详细讲解,大家可以通过阅读这篇文章对华南女子学院护理专业怎...
考研专业
本文主要针对自考本科考研复试要不要进行加试,自考本科生参加考研需要加试吗知乎和自考本科考研要加试吗等几个问题进行详细讲解,大家可以通过阅读这篇文章对自考本科考研复试要不...
考研专业
本文主要针对制药工程技术和制药工程的区别,制药企业工程设备部与质量部的关系是什么和制药设备与工程专业等几个问题进行详细讲解,大家可以通过阅读这篇文章对制药工程技术和制药...