小学全部奥数十大公式?
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
二、和倍问题的公式
和÷(倍数-1)=小数
小数×倍数=大数(或者和-小数=大数)
三、差倍问题的公式
差÷(倍数-1)=小数
小数×倍数=大数(或小数+差=大数)
四、植树问题的公式
1.非封闭线路上的植树问题主要可分为以下三种情形:
1.1.假设在非封闭线路的两端都要植树,既然如此那,:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
1.2.假设在非封闭线路的一端要植树,另一端不要植树,既然如此那,:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
1.3.假设在非封闭线路的两端都不要植树,既然如此那,:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2.封闭线路上的植树问题的数量关系请看下方具体内容:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
五、
盈亏问题的公式
(盈+亏)÷两次分配量之差=参与分配的份数
(大盈-小盈)÷两次分配量之差=参与分配的份数
(大亏-小亏)÷两次分配量之差=参与分配的份数
六、
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
七、
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
八、
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
九、
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×百分之100=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
十、
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×百分之100=(售出价÷成本-1)×百分之100
涨跌金额=本金×涨跌百分比
折扣=实质上售价÷原售价×百分之100(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-百分之20)
奥数全部公式?
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a
7、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
8、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab
9、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh
10、三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高
11、平行四边形s面积a底h高面积=底×高s=ah
12、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷2
13、圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏
14、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径
15、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数
16、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数
17、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
18、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
19、植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴假设在非封闭线路的两端都要植树,那:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵假设在非封闭线路的一端要植树,另一端不要植树,那就这样:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶假设在非封闭线路的两端都不要植树,既然如此那,:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系请看下方具体内容:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
20、盈亏问题(盈+亏)÷两次分配量之差=参与分配的份数(大盈-小盈)÷两次分配量之差=参与分配的份数(大亏-小亏)÷两次分配量之差=参与分配的份数
21、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间
22、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间
23、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2
24、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×百分之100=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量
25、利润与折扣问题利润=售出价-成本利润率=利润÷成本×百分之100=(售出价÷成本-1)×百分之100涨跌金额=本金×涨跌百分比折扣=实质上售价÷原售价×百分之100(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-百分之20)
有关圆的奥数和公式。?
一、周长公式
1、圆的周长 :C=2πr (r:半径)
2、半圆周长:C=πr+2r
二、圆的面积
1、面积:S=πr²
2、半圆面积:S=πr²/2
三、弧长的视角公式
1、扇形弧长:L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
2、扇形面积:S=nπ R²/360=LR/2(L为扇形的弧长)
3、圆锥底面半径: r=nR/360(r为底面半径)(n为圆心角)
4、扇形面积公式:S=nπr²/360=rl/2
R:半径,n:弧所对圆心的视角数,π:圆周率,L:扇形对应的弧长。
也可用扇形所在圆的面积除以360再乘以扇形圆心角的的视角n。
四、圆的方程:
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
2、圆的大多数情况下方程:把圆的标准方程展开,移项,合并同一类型项后,可得圆的大多数情况下方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,实际上D=-2a,E=-2b,F=a^2+b^2。
五、圆和点的位置关系:
以点P与圆O的作为例子(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.
六、直线与圆有3种位置关系:
无公共点为相离;
有两个公共点为相交;
圆与直线有唯一公共点为相切。这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O作为例子(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
拓展资料:一、圆的性质
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)相关圆周角和圆心角的性质和定理
(1) 在同圆或等圆中,假设两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,既然如此那,他们所对应的其余各组量都分别相等。
(2)在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
(3) 假设一条弧的长是另一条弧的2倍,既然如此那,其所对的圆周角和圆心角是另一条弧的2倍。
(3)相关外接圆和内切圆的性质和定理
(1)一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
(2)内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
(3)R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
(4)两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
(5)圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
(4)假设两圆相交,既然如此那,连接两圆圆心的线段(直线也可以)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
小学奥数项数公式?
末项=首项+(项数-1)×公差 an=a1+(n-1) ×d 2
原创文章,作者:nicole,如若转载,请注明出处:https://bbs.china-share.com/4009.html
声明:本文来自用户投稿,该文观点仅代表作者本人,蛋壳游戏网系信息发布平台,蛋壳游戏网仅提供信息存储空间服务。
所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们dankeac@qq.com 反馈 本站将在三个工作日内处理并回复。